pengertian baris dan deret

                                                         
      BARISAN DAN DERET
1. Definisi Barisan :
Barisan adalah daftar urutan bilangan dari kiri ke kanan yang mempunyai karakteristik atau pola tertentu. Setiap bilangan dalam barisan merupakan suku dalam barisan. 

Contoh :
1,2,3,4,5,6,…,…,…,…,… dst
2,4,6,8,10,12,…,…,…,… dst

Definisi deret :
Penjumlahan suku-suku dari suatu barisan disebut deret. Jika U1,U2,U3,…..Un maka U1 + U2 + U3 +… +Un adalah deret.

Contoh :
1 + 2 + 3 + 4 +… + Un
2 + 4 + 6 + 8 +… + Un

A.    Baris dan Deret Aritmatika

Definisi baris aritmatika :
Jika beda antara suatu suku apa saja dalam suatu barisan dengan suku sebelumnya adalah suatu bilangan tetap b maka barisan ini adalah barisan aritmatika. Bilangan tetap b itu dinamakan beda dari barisan.

Polanya : a, a+b, a+2b, a+3b,…..,a+(n-1)b
Dengan
o   a = U1= Suku pertama       
o   b = beda
o   n = banyaknya suku
o   Un = Suku ke-n









Suku pertamanya adalah 3 (a=3) dan bedanya adalah 2 (b=2), banyaknya suku ada 5 (n=5), suku ke-5 adalah 11 (U5 = 11).
Deret aritmatika adalah jumlah dari baris aritmatika.
            Contoh : 3 + 5 + 7 + 9 + 11   
o   Ut = Suku tengah
o   Sn = Jumlah n suku pertama  
Berikut adalah cara untk mengetahui nilai dari beberapa hal yang disebut di atas :
·         Beda
b = Un – Un-1
·         Suku ke-n
Un = a + (n-1)b
Un = Sn – Sn-1
·         Jumlah n suku pertama
Sn = ½ n (U1 + Un)
Sn = ½ n ( 2a + (n-1)b )
·         Nilai tengah
Ut = ½ (U1 + Un)
      B. BARIS DAN DERET GEOMETRI

Definisi barisan geometri :
            Jika rasio antara suku apa saja dalam suatu barisan dengan suku sebelumnya merupakan suatu bilangan tetap r maka barisan tersebut adalah barisan geometri.bilangan tetap r disebut rasio dari barisan.

Contoh :
2,6,18,48….. adalah barisan geometri dengan rasio 3. Artinya adalah nilai pada Un = 3Un-1.
           
 
Definisi deret geometri :
        Jika U1,U2,U3,…..Un adalah barisan geometri maka jumlah U1 + U2 + U3 +… +Un disebut deret geometri.

Rumus jumlah n suku pertama dari deret geometri adalah :
            Sn = a( 1- rn ) / 1 – r , jika r < 1 dan
                        Sn = a( rn - 1) / r – 1 , jika r > 1

Rumus Deret Aritmatika

Barisan dari aritmatika dapat di artikan yang artinya adalah susunan bilangan yang real dan membentuk pola tertentu. Kemudian arti dari deret aritmatika sendiri iyalah sebuah penjumlahan dari barisan aritmatika. Dan ciri – ciri umum nya dari barisan aritmatika yaitu mempunyai beda yang sama dari satu bilangan ke bilangan yang berikut nya. Contoh dari barisan aritmatika ialah seperti di bawah ini :

2 , 10 , 18 , 26 , 34 , 42 …..dan seterus nya

Dan barisan di atas mempunyai nilai beda yaitu 8 ( b = 8 ). Selanjut nya akan kita bahas lebih dalam lagi soal rumus, barisan, dan deret dari aritmatika.

Barisan Aritmatika

Baris aritmatika =>   a         a + b          a + 2b  …  a + ( n – 1 ) b
Beda                 =>        +b              +b
Pengertian dari barisan artimatika sendiri iyalah sebuah barisan dengan selisih antara 2 suku yang berurutan selalu tetap. Dan selisih antara 2 suku yang berurutan pada barisan aritmatika ini di sebut dengan beda ( b ). Dan rumus untuk menentukan beda pada suatu barisan di aritmatika yaitu seperti contoh di bawah ini.

b = Un – Un-1


beda nya adalah ( b ), suku ke – n nya adalah ( Un  dan Un-1 )
lalu suku ke – n suatu barisan di aritmatika dapat di tentukan dengan sebuah rumus. Dan rumus nya di gambarkan seperti contoh di bawah ini.

Rumus Ke – n


Un = a + ( n – 1 ) b

Keterangan :
  • a = suku pertama
  • b = beda
  • Un = suku ke – n
  • n = bilangan bulat
Ternyata ada juga rumus yang bisa kita gunakan untuk menentukan suku tengah nya dari sebuah barisan aritmatika. Dan rumus ini di gambar kan seperti contoh di bawah ini :

Rumus Aritmatika Suku Tengah


Ut = 1/2  ( U1 + Un )


Keterangan :
  • a ( U1 ) = suku pertama
  • Ut = suku tengah
  • Un = suku ke – n
  • n = bilangan bulat

Deret Aritmatika

Barisan aritmatika menyatakan bahwa susunan bilangan nya berurutan u1 , u2 , … , un  dengan urutan tertentu. Sedangkan pada deret aritmatika, untuk pembahasannya adalah mengenai jumlah suku – suku berurutan tersebut. Untuk contoh bentuk umum dari deret aritmetika adalah seperti di bawah ini.

U1 + U2 + U3 + … + Un


Dengan u1 , u2 , … , un merupakan barisan dari aritmetika.
Untuk rumus nya bisa kalian lihat di bawah ini :

Rumus Penting Deret Aritmatika

Un = Sn – Sn – 1
Sn = n/2 ( a + Un )
Sn = n/2 ( 2a + ( n – 1 ) b )

Contoh Soal Aritmatika

  1. Di ketahui suatu barisan 5, -2, -9, -16,…., maka tentukanlah rumus suku ke – n nya?
Jawab :
Selisih 2 suku berurutan pada barisan 5, -2, -9, -16,… adalah tetap, yakni b = -7 sehingga barisan bilangan nya di sebut dengan barisan aritmatika.
Rumus suku ke – n barisan aritmatika tersebut ialah :
Un = a + ( n – 1 ) b Un = 5 + ( n – 1 ) ( -7 ) Un = 5 – 7n + 7 Un = 12 – 7n
Itulah penjelasan lengkap tentang rumus barisan aritmatika dan deret aritmatika beserta contoh soal dan cara penggunaan dari rumus nya baik itu barisan aritmatika maupun barisan aritmatika semoga bermanfaat…


Komentar